A study on exponential-size neighborhoods for the bin packing problem with conflicts
نویسندگان
چکیده
We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.
منابع مشابه
Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملHeuristics for Solving the Bin-Packing Problem with Conflicts
This paper deals to solve the one dimensional bin-packing problem with conflicts. The conflicts are represented by a graph whose nodes are the items, and adjacent items cannot be packed into the same bin. We propose an adaptation of Minimum Bin Slack heuristic also with a combination of heuristics based on the uses of the classical bin-packing methods to packing items of maximal-stable-subsets ...
متن کاملOn Bin Packing with Conflicts
We consider the offline and online versions of a bin packing problem called bin packing with conflicts. Given a set of items V = {1, 2, . . . , n} with sizes s1, s2 . . . , sn ∈ [0, 1] and a conflict graph G = (V, E), the goal is to find a partition of the items into independent sets of G, where the total size of each independent set is at most one, so that the number of independent sets in the...
متن کاملApproaches to Bin Packing with Clique-Graph Conflicts
The problem of bin packing with arbitrary conflicts was introduced in [3]. In this paper, we consider a restricted problem, bin packing with clique-graph conflicts. We prove bounds for several approximation algorithms, and show that certain onand off-line algorithms are equivalent. Finally, we present an optimal polynomial-time algorithm for the case of constant item sizes, and analyze its perf...
متن کاملA new lower bound for bin-packing problem with general conflicts graph
We propose a new lower bound for the one dimensional bin-packing problem with conflicts. The conflicts are represented by a graph whose nodes are the items, and adjacent items cannot be packed into the same bin. The lower bound is based on an iterative search of maximal cliques in the conflict graph using Johnson's heuristic. At each step we delete from the graph the items of the last clique fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.08495 شماره
صفحات -
تاریخ انتشار 2017